I'm doing a masters in law https://farmaclubprime.com/does-enzyte-247-work-6147.pdf reviews of enzyte natural male enhancement The way you get a plane in the air is to generate enough thrust to overcome its weight, so that the thrust plus the weight of air itself is higher than the weight of the plane. The way you get a plane to land is to reverse the process that generates the thrust. This does not mean that you lower the power and point the nose toward the ground. It's kind of complex, because you want to land at a specific spot, like, say, on a runway, where you can burn off all the excessive energy that the plane has in a way that doesn't kill anyone or wreck the thing. The way to do this properly is to calculate a descent rate from a particular spot close to the runway threshold. The descent rate depends upon the weight of the airplane, because it represents the safest, slowest possible speed that the plane can lose its thrust, stay on an angle, and maintain control. Pilots will know that they'll need to land with a specific approach speed. Air Traffic Control will give them time to reduce their speed slowly; obviously, a plane can't fly at 300 knots until two miles out and then suddenly hope to slow down to between 150 and 160 knots right at the runway threshold without something going wrong. Usually, planes step down their speeds and altitudes gently, and are given several miles to set up their approaches -- both the speed (the groundspeed, not the airspeed) and the angle (the glideslope). Generally, a plane's approach speed is a relative constant. The airframe accounts for a set weight, but variations in fuel aboard, the passenger count, the tailwinds on the ground and even the temperature can push the number higher or lower. The pilots and their dispatches can calculate the figure very quickly if conditions rapidly change. But they can't and never do ballpark the figure.
(携帯) |